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BACKGROUND

Filler-gap dependencies: contingencies between fillers (like what) and gaps
- positions where fillers are interpreted in a sentence.

(1) I know what the priest revealed __ at the party.

- >

(2) | heard about the secret that the priest revealed __

~— >
Wilcox et al. (2018, 2019) found that neural network without specific
language bias can learn complex generalizations about wh-filler-gap
dependencies like (1) from raw English text data.

at the party.

We test the generality of this result by:

- Training and testing a similar model on Norwegian data
- Including relative clause (RC) dependencies like (2) into the test set

MODELS

1. LSTM RNN model trained on next word prediction task (ppl 30.4)
- 113 million tokens from Norwegian Bokmal Wikipedia
- Trained following procedure by Gulordava et al. (2018)

2. Baseline model: 5-gram model with Knesser-Ney smoothing (ppl 133.5)

DEPENDENT VARIABLE

Surprisal - inverse log probability that the model assigns to a word given
the previous context: S(w,,) = —log,p(w,|h,,_1), where h,,_, is LSTM’s
hidden state before consuming w,,.

MEASURING FILLER-GAP DEPENDENCIES

Manipulating the presence of a filler and the presence of a gap:

-GAP CONDITIONS:
a. She knows that the priest revealed the secret at the party.  -FILLER
b. *She knows what the priest revealed the secret at the party. +FILLER

Filled-gap effect (FGE): surprisal difference between b and a at the secret.
FGEs should be positive (surprisal: high - low)

+GAP CONDITIONS:
c. She knows what the priest revealed
d. *She knows that the priest revealed

at the party. +FILLER
at the party. -FILLER

Unlicensed gap effect (UGE): surprisal difference between c and d at at the
party. UGE should be negative (surprisal: low - high)

EXPERIMENTS

Across two dependency types, we explore whether the model:

1. Can learn the flexibility of filler-gap licensing: fillers can license gaps in
multiple syntactic positions (Subject, DO, and OBL):

(3) She knows that the priest revealed the secret in front of the guests at

the party.

2. Can establish dependencies across increased linear distance:
(4) | heard about the secret that the priest [in a black robe and white collar]
revealed __ at the party.

Tested no, short (2-4), medium (5-8) and long (9-12) subject modifiers.

RESULTS

The LSTM model represents filler-gap dependencies across two
dependency types in Norwegian by:

- Showing filled-gap and unlicensed gap effects

- Exhibiting them across all syntactic positions despite increased linear
distance between the filler and the gap

General-purpose neural networks

can learn basic syntactic
generalizations about filler-gap

dependencies in Norwegian

1. Flexibility of filler-gap licensing
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2. Linear distance between the filler and the gap
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CONCLUSIONS & FUTURE WORK
The LSTM model could learn basic properties of filler-gap dependencies in Norwegian, in line with Wilcox et al.’s findings

for English. It had strongest expectation for Subject gaps, followed by DO and OBL gaps for both dependency types

« Humans do not exhibit subject FGEs with wh-dependencies but do so with relative clauses (Stowe, 1986; Lee, 2004)
 The model is more likely to be affected by corpus statistics

Future work will test if the model can learn more properties of filler-gap dependencies, as well as constraints on them
known as islands (Ross, 1967)
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